The antithesis involved in "Too many cooks spoil the broth" yet "Many hands make the work light" have intrigued me since I first learnt them. So has also the existence of almost opposite religious beliefs.
Both sides are right. Both sides are wrong. I believe that both are right, because the prescibers believe that they are right. But I think they are wrong because they prove others wrong by the following argument.
I am right for sure (agreed).
He thinks exactly opposite of what I think (agreed)
and so he must be wrong for sure (naah!).
The whole thing is a logical trail followed by a presumption that the nature is defined by one rule. And what do we do when we arrive at a contradiction following a logical argument? We say that the presumption is wrong. So it is wrong to presume that there is one rule ,or religion,or proverb for life.
Let me jump into something totally unrelated (and it would be cool to show in the end that , they were related. Or did I already spoil the suspense! ). Heard about princes of Amber. It is an epic which is action pact for the first 5 parts and more philosophical/metaphysical for the last 5. Anyways I have not read it, and don't plan to in the near future. Varun told me about it, and luckily he told me the only thing which I would have considered as the gist (and would have written in the diary or something) , from the whole of the epic.
The set up of the story is itself very fascinating. There are two and only two real worlds : one of order and one of chaos. Our world is only a shadow of these two worlds. There are infinite such shadow worlds. Though the two poles are really really important, most of the action actually happens in the shadow world. The shadow worlds as you might have guessed , somewhere in between the two extremes. Then the story says that the two polar worlds are ruled by kings and it is the story of a prince of the ordered world who because of some reason is raised in the world of chaos and ...
Another irrelevant fact: Heard about sine curve? Of course you have! About sine series expansion? Anyways, sine function can be very elegantly expressed as an infinite summation of rational numbers. It is called a taylor series. Strictly speaking it is not addition always. It is alternating addition and subtraction.
Note that the beauty (as pointed out by Amrit ) is that even if there are infinite terms in the series, the overall sum oscillates so beautifully between the same values of -1 and 1 in exactly the same manner. As the value of x increases automatically the power of dominance is shifted to a different term. Every term is somehow responsible for the range of x , in which he is the most dominant.(With great power comes great responsibility) The terms each individually are fulfilling their responsibility with full sincerity, if they had not the sine curve would have been unstable and ...
(will continue in part 2)
Comments